LIVER: Focal Benign and Malignant Disease

Richard L. Baron, MD
Professor of Radiology
The University of Chicago

Khaled M. Elsayes, MD
Associate Professor of Radiology
The University of Texas
MD Anderson Cancer Center
Cystic Lesions

- Simple Cyst
- Caroli’s Disease
- Biliary Hamartomas
- AD Polycystic Kidney Disease

Complex Cystic Lesions

- Biliary Cystadenoma
- Abscess
- Cystic Met.
- Hydatid disease
- Organizing hematoma
- Post RF Ablation Cavity
Biliary Cystadenoma

• Benign and malignant cystic tumors of biliary origin may arise in the liver
• Multiloculated and can be filled with mucinous fluid.
• Mural nodules may be a component of some cysts
• High malignant potential. Which is directly related to the thickness of wall/sepatations and larger amounts of solid components
Evaluating Enhancing Liver Lesions

Outlines and Morphology
Homogeneous v. Heterogeneous Enhancement Pattern
Washout Pattern
Outlines and Morphology

Non-Cirrhotic

FNH: Can be homogeneous, although central scar in the majority; lobular contour

Flash filling hemangioma: Typically small, can be homogeneous, delayed retention of contrast. High signal on T2

Adenoma: Young female. History of oral contraceptive
- Presence of hemorrhage and lipid indicate the diagnosis

Hypervascular Mets: Primary cancer: thyroid, RCC, NET, pheochromocytoma. Multiplicity

HCC: Uncommon in the absence of cirrhosis.
- Hepatitis B can lead to HCC without cirrhosis
Hepatocellular Carcinoma (HCC)

- Most common primary malignant tumor.
- In cirrhosis is diagnosis of exclusion!

- AFP is usually elevated in advanced cases but is not used for screening under current AASLD guidelines.

- MR signal intensities vary greatly and no characteristic pattern exists for small tumors.

- Most HCCs show intense enhancement, although 10 – 15% are hypovascular
<table>
<thead>
<tr>
<th></th>
<th>HCC</th>
<th>Benign Nodule</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP Hyperintensity</td>
<td>84%</td>
<td>42%</td>
</tr>
<tr>
<td>T2 Hyperintensity</td>
<td>60%</td>
<td>16%</td>
</tr>
<tr>
<td>Washout</td>
<td>79%</td>
<td>65%</td>
</tr>
<tr>
<td>Hepatobiliary Delay Hypointensity</td>
<td>79%</td>
<td>51%</td>
</tr>
<tr>
<td>All 4 signs</td>
<td>42%</td>
<td>0%</td>
</tr>
<tr>
<td>≤ 1 sign</td>
<td>9%</td>
<td>64%</td>
</tr>
</tbody>
</table>

Kim TK, Radiology, 2011
Cirrhotic Liver Nodules

The majority of HCCs are believed to arise in a stepwise pattern

- Large HCC
- Small HCC
- HCC on Dysp. N.
- Dysp. N.
- Reg. N.
HCC Dx: AASLD CRITERIA

≥ 10 mm Liver Lesion, chronic liver disease
(AP hypervascularity & PV/EQ washout)

If atypical on CT or MR, recommends utilizing the other for possible characterization

< 10 mm
Repeat US every 3-6 months for 2 years

AFP NO LONGER USED FOR SCREENING

American Association for the Study of Liver Diseases (AASLD) Practice Guideline. 2010
Flash Filling Hemangioma

- Most common benign tumor and the 2nd most common tumor of the liver after metastasis.
- Usually hypointense on T1 and markedly hyperintense on T2.
- Flash filling hemangioma is atypical form for hemangiomas smaller than 2 cm.
Fibrolamellar Carcinoma

• Well-circumscribed focal lesion low signal on T1.
• High signal on T2-weighted images.
• Early heterogeneous post-contrast enhancement, which fades on subsequent images.

• A central radiating scar is seen in 80% of cases and has low signal on T2.
• Minimal or no enhancement on post-contrast. As a result, the scar is usually hypointense relative to the remainder of tumor.
Focal Nodular Hyperplasia: CT Findings

Often lobulated, in contrast to adenoma

Enhancement: 106/106 Hyperenhancing Arterial Phase

101 Enhanced Homogeneously
82/89 Isoattenuating on Delay

Central Scar: 62/124

40/62 Large Lesions
22/62 Small Lesions

1/124 Calcifications
1/124 Tumoral hemorrhage

Brancatelli et al, Radiology, 2001
Focal Nodular Hyperplasia: MR Findings

T1: Iso or mildly hypointense
T2: Iso or mildly hyperintense

Enhancement: Hyperenhancing arterial phase
Enhances homogeneously
Isoattenuating on delay

Central Scar: iso/hypointense T1
hyperintense T2 (84%)
Delay enhancement with Gadolinium

Mortele et al, AJR 2000
FNH: Physiologic Characterization

- Nuclear Medicine: Sulfur Colloid or HIDA scanning (Kupffer Cell uptake)

- T2 Effect: Ferrite (Kupffer Cell uptake) SPIO, USPIO
 - Minimal but possible uptake in adenoma, well differentiated HCC

- T1 Effect: MnDPDP; Gd-BOPTA and Eovist (Bile duct excretion);
 - Also retained in HCC
 - Adenoma typically washes out contrast on delay imaging
Nodular Regenerative Hyperplasia (NRH): Budd-Chiari Syndrome

- Multiple nodules (often > 10)
- 0.5 to 7.0 cm diameter
- Homogeneous or heterogeneous imaging appearance
- Prevalence at imaging: 25%

Vilgrain et al, Radiology 1999; 210:443
Peripheral Washout
Metastatic Deposit

- Peripheral washout is a specific sign of malignancy
- Described for carcinoid, breast, colon and gastric ca
- Peripheral hypointense rim relative to center of the lesion
- Best seen 10 min. after administration contrast
Delayed Enhancement
Cholangiocarcinoma

- Most common biliary tumor and 2nd primary malignant hepatic tumor in adults
- Classified as intrahepatic; peripheral, hilar intrahepatic and extrahepatic.
- Hypointense on T1 & hyperintense on T2
- Initial peripheral enhancement & delayed concentric filling
Cholangiocarcinoma: Clues on CT

- Overlying capsular retraction
- Delayed contrast enhancement
- Proximal biliary obstruction
- Presence of PSC
Hemangioma

- Incidence: 20% of the general adult population
- Most common benign tumor and the 2nd most common tumor of the liver after metastasis
- Hypointense on T1 & markedly hyperintense on T2
- Early peripheral nodular with progressive centripetal enhancement on subsequent phases
Markedly Bright T2 differential

- Cyst
- Hemangioma
- Cystic tumor (necrotic tumor)
- Neuroendocrine solid tumors
- GIST
- Angiosarcoma
Hypervascular Metastases

-Metastasis is commonest cause of malignant lesion.

-Liver is 2nd site for metastasis after regional LN.

-NET, RCC, breast, melanoma, thyroid, pheo and carcinoid are the most common primaries.

- Best seen on the arterial phase of enhancement. Most of lesions have high signal intensity on T2.
Hypovascular Metastases

- Metastases is most common cause of malignant liver lesion.
- Liver is 2nd site for metastasis after regional LNs
- Colon, lung, prostate, and TCC are common primaries
- Low T1, high T2 and minimal contrast enhancement
Sarcoidosis

- Granulomatous systemic disease of unknown etiology involve numerous sites, including liver
- Hypointense on all sequences, hypoenhancing relative to the background liver
- Most conspicuous on T2 fat-saturated images & early-phase gadolinium-enhanced T1
Lesions containing fat at imaging
(Macroscopic vs. Intracellular)

- Lipoma
- Angiomyolipoma
- Metastasis (malignant teratoma, liposarcoma)
- HCC with fatty metamorphosis
- Adenoma
- Focal fatty infiltration
Focal fatty infiltration

- Important to be differentiate from focal hepatic lesion containing intracellular lipid
- Characteristic signal loss of out of phase compared to in-phase
- Lack of surrounding mass effect; Often anatomic (segment or lobar) distribution
- Normal traversing vessels allow distinction from lipid containing tumor such as HCC or adenoma
HEPATOCELLULAR ADENOMA

• Monoclonal Hepatic Neoplasm
 – Risk Factors: Oral contraceptives; Glycogen Storage Disease; Obesity

• Varied Imaging Appearances
 – Most hypervascular; some with washout, some with persistent enhancement
 – Some with fatty elements
 – Some with fibrous capsule

• Varied Biological Behavior
 – Many associated with Oral Contraceptives; Some not
 – Some spontaneously bleed, some not
 – Rare malignant degeneration
HEPATOCELLULAR ADENOMA

- Common (30 – 35%); often called “Steatotic HCA”
 - TCF1 mutation
 - Fatty acid synthesis and impaired transport, results in excessive accumulation of lipids.
- Imaging
 - Vascular with no delayed enhancement
 - Heterogeneous appearance with tumoral steatosis
- Biological Behavior
 - Propensity to hemorrhage if > 5cm
 - No risk of malignant degeneration
HCA: Interleukin 6 Signal Transducer (IL6ST) Gene Mutation

- Most common (40 – 55%); often called “inflammatory HCA”
 - 60% IL6ST mutation; remainder show STAT 3 activation without mutations
 - Seen in association with diffuse hepatic steatosis (and obesity) and elevated serum inflammatory markers (C-reactive protein)

- Infiltrates, dystrophic vessels with sinusoidal dilatation

- Imaging
 - Vascular with persistent enhancement
 - ↑ T2 signal

- Biological Behavior
 - Propensity to hemorrhage; Small risk of malignant degeneration
HCA: B-Catenin Activation

• Uncommon (10-18%)
 – Risk factors include Glycogen Storage Disease, male hormone administration
 – Seen in men and women.

• Characterized by multiple other chromosomal and genetic alterations, resulting in higher risk of malignant transformation

• Imaging -- often nonspecific
 – Vascular enhancement with washout
 – Uncommon for tumoral steatosis

• Biological Behavior
 – Highest risk of malignant degeneration
DDX: Calcified Liver Masses

- Metastatic tumor
 - Mucin-producing neoplasm: ovary, stomach, colon, breast
- Primary malignant
 - Intrahepatic cholangiocarcinoma
 - Fibrolamellar HCC
- Others—benign, infectious, vascular